CS103X: Discrete Structures
 Homework Assignment 4

Due February 22, 2008

Exercise 1 (10 points). Silicon Valley questions:
(a) How many possible six-figure salaries (in whole dollar amounts) are there that contain at least three distinct digits?
(b) Second Silicon Valley question: What is the number of six-figure salaries that are not multiples of either 3,5 , or 7 .

Exercise 2 (15 points). A rook on a chessboard is said to put another chess piece under attack if they are in the same row or column.
(a) How many ways are there to arrange 8 rooks on a chessboard (the usual 8×8 one) so that none are under attack?
(b) How many ways are there to arrange k rooks on an $n \times n$ chessboard so that none are under attack?
(c) Imagine a three-dimensional chess variant played on a $8 \times 8 \times 8$ board. (512 cells overall.) Call it Weir-D Chess. A battleship is a Weir-D Chess piece that can attack any piece that is in the same two-dimensional layer, along some coordinate. (For example, a battleship in position ($5,2,6$) puts cell $(8,2,1)$ under attack, but not cell $(8,3,1)$.) How many ways are there to arrange 8 battleships on a Weir-D Chess board so that none are under attack?

Give solutions with no summation.
Exercise 3 (15 points). A function $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, m\}$ is called monotone nondecreasing if $1 \leq i<j \leq n \Rightarrow f(i) \leq f(j)$.
(a) How many such functions are there?
(b) How many such functions are there that are surjective?
(c) How many such functions are there that are injective?

Exercise 4 (10 points). How many ways are there to express a positive integer n as:
(a) A sum of k natural numbers? (For example, if $n=2$ and $k=3$ the answer is 6 , since $2=2+0+0=$ $0+2+0=0+0+2=1+1+0=1+0+1=0+1+1$.)
(b) A sum of positive integers?

The order of the summands is important. (Imagine the summation written down.)
Exercise 5 (10 points). Prove either algebraically or combinatorially:
(a) For $p, n \geq 0, \sum_{k=p}^{n}\binom{k}{p}=\binom{n+1}{p+1}$
(b) $\sum_{k=0}^{n}\binom{m+k}{k}=\binom{m+n+1}{n}$

Exercise 6 (10 points). Give a closed-form expression (without summation) for the following:

$$
\sum_{k=0}^{n} 2^{k}\binom{n}{k}
$$

Exercise 7 (10 points). In a mathematics contest with three problems, 80% of the participants solved the first problem, 75% solved the second and 70% solved the third. Prove that at least 25% of the participants solved all three problems. (The claim might seem obvious - find a proof.)

Exercise 8 (10 points). What is the number of integer solutions of the equation

$$
x_{1}+x_{2}+x_{3}=50,
$$

such that $0 \leq x_{i} \leq 20$ for each $1 \leq i \leq 3$?
Exercise 9 (10 points). There are n people at a party, and each person has arrived in a different hat. The revelry leaves them slightly tipsy, so each of them goes home wearing someone else's hat. Find the number of ways of putting n hats on n people so that no person is wearing his/her own hat. Give the full proof.

