
CS103X: Discrete Structures
Homework Assignment 2: Solutions

Due February 1, 2008

Exercise 1 (10 Points). Prove or give a counterexample for the following:

Use the Fundamental Theorem of Arithmetic to prove that for n ∈ N,
√

n is irra-
tional unless n is a perfect square, that is, unless there exists a ∈ N for which n = a2.

Solution: We will prove the statement by contradiction. Assume n ∈ N is not a
perfect square, yet its square root is a rational number p

q
for coprime integers p, q,

where q 6= 0. So
√

n = p
q

or n = (p
q
)2. Without loss of generality, we can assume both

p and q are non-negative. If p = 0, then n = 0 which is a perfect square, contradicting
our assumption. So we can assume both p and q are positive. By the Fundamental
Theorem of Arithmetic, we can uniquely write both p and q as products of primes, say
p = p1p2 . . . pm and q = q1q2 . . . qn. Since p and q are coprime, they have no common
factors, so pi 6= qj for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. We have:

p2 = (p1p2 . . . pm)2 = p2
1p

2
2 . . . p2

m

and
q2 = (q1q2 . . . qn)2 = q2

1q
2
2 . . . q2

n

Now p2andq2 cannot have any common factors > 1 if they did have a common
factor d > 1, any prime factor f of d (and there must be at least one such) must also
be a common prime factor of p2 and q2 (transitivity of divisibility). By the Funda-
mental Theorem of Arithmetic, p2

1p
2
2 . . . p2

m is the unique prime factorization of p, so f
must be one of the primes p1, p2, . . . , pm. Similarly, f must also be one of the primes
q1, q2, . . . , qn. But this contradicts our statement that no pi = qj. So p2 and q2 are
coprime.

A ratio of natural numbers in lowest terms is itself a natural number if and only if
its denominator is 1. Since n ∈ N , we must have q2 = 1, which implies q = 1. But then
n must be the perfect square p2, which contradicts our assumption. The statement is
thus proved by contradiction.
Exercise 2 (20 Points). Prove or disprove, for integers a, b, c and d:

(a) If a|b and a|c, then a|(b + c).

(b) If a|bc and gcd(a, b) = 1, then a|c.

(c) If a and b are perfect squares and a|b, then
√

a|
√

b.
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(d) If ab|cd, then a|c or a|d.

Solution:

(a) If a|b then b = ma for some integer m and if a|c then c = na for some integer n.
Thus, (b + c) = ma + na = (m + n)a. Since m + n is an integer, a|(b + c)

(b) The proof is essentially identical to that of Theorem 5.1.1.a. Since gcd(a, b) = 1,
there exist integers u, v with au + bv = 1. Multiply both sides by c to get
c = auc + bcv (by the result of the first part of this exercise). We know that a|bc
so a|bcv and of course a|auc, so a|(auc + bcv). Thus a|c.

(c) Proof by contradiction: Assume
√

b is not divisible by
√

a. Consider the prime
factorizations of

√
a and

√
b - there must be some prime p that appears m times

in the prime factorization of
√

a and n times in the prime factorization of
√

b
with m > n. The prime factorizations of perfect squares include every element
of their square roots factorization twice, so p must occur 2m times in the prime
factorization of a and 2n times in the prime factorization of b. But 2m > 2n,
which implies that b is not divisible by a, a contradiction. Therefore

√
a|
√

b.

(d) False. One possible counterexample is a = 10, b = 1, c = 4, d = 25.

Exercise 3 (25 Points). On Euclids algorithm:

(a) Write the algorithm in pseudo-code. (10 points)

(b) Prove that Euclids Algorithm correctly finds the GCD of a and b in a finite number
of steps. (10 points)

(c) Use the algorithm to calculate gcd(1247, 899). Write out the complete sequence
of derivations. (5 points)

Solution:

(a) Procedure GCD-Euclid

Input: Integers a, b, not both 0.

i. a = |a|, b = |b|
ii. If b > a then swap a and b first

iii. If b = 0, then return a

iv. q = ba/bc (Quotient)

v. r = a− q ∗ b (Remainder)

vi. If r = 0, then return b

vii. Return GCD-Euclid(b, r)
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The first three lines are needed only for the recursive call and can be factored out
with a second procedure.
The following nonrecursive version also works:

Procedure GCD-Euclid-Nonrecursive

Input: Integers a, b, not both 0.

i. a = |a|, b = |b|
ii. If b > a then swap a and b

iii. If b = 0, then return a

iv. Do

v. q = ba/bc (Quotient)

vi. r = a− q ∗ b (Remainder)

vii. If r = 0, then return b

viii. a = b

ix. b = r

x. Loop

(b) Theorem. Euclid’s Algorithm correctly finds the GCD of a and b in a finite
number of steps.

Proof. We will prove the correctness of the algorithm in the context of the recur-
sive listing above. The proof for the non-recursive version is identical except that
it is slightly more difficult to phrase correctly. The first couple of lemmas help to
justify the assumption a > b > 0 in the lecture notes.

Lemma 1. d|a if and only if d | |a|.
Proof. First we show that if d|x, then d| − x. By the Division Algorithm, x = qd
for some integer q, so −x = −qd = (−q)d. Since −q is obviously integral since q
is (and the Division Algorithm guarantees that this is an unique representation
given x, d), d divides −x. So if d|a, then |a| is either a, which is trivially divisible
by d, or −a, which by the above reasoning is also divisible by d. Similarly, if d |
|a|, then a is either |a| or −|a|, both of which are divisible by d as above. This
proves the result.

Lemma 2. gcd(a, b) = gcd(|a|, |b|) = gcd(|b|, |a|) Proof. Let d = gcd(a, b). Since
d = gcd(a, b), d|a and d|b, so by Lemma 1, d | |a| and d | |b|, i.e. d is a common
divisor of —a— and —b—. Now we prove by contradiction that d is the greatest
such divisor. Assume there is some c > d such that c | |a| and c | |b|. Then by
Lemma 1, c|a and c|b. So c is a common divisor of a and b strictly greater than
the GCD of a and b, which contradicts the definition of the GCD. Therefore we
must have gcd(a, b) = gcd(|a|, |b|). Also, the definition of gcd(x, y) is clearly
symmetric in x and y, so gcd(|a|, |b|) = gcd(|b|, |a|). Hence proved.

3



Back to the original problem. Let P (n) be the following statement:
“Euclids Algorithm finds the correct GCD of a and b in a finite number of steps,
for all 0 ≤ a, b ≤ n (a and b not both 0).”

We will prove P (n) holds for all positive integers n by induction. We assume
a ≥ b: if not, the first couple of steps of the algorithm will take their absolute
values and swap them if necessary so the relation holds, and by Lemma 2 the
GCD of these two new values is precisely the same as the GCD of the original
values. The base case, n = 1, has two possibilities: a = 1, b = 0, or a = 1, b = 1.
In the first case, the third line of the algorithm returns the correct GCD 1, and
in the second case r evaluates to 0 before any recursive calls, so the correct GCD
b = 1 is returned, in a finite number of steps (no recursive calls, so at most 6 lines
of pseudocode).

Now assume P (n) is true and consider P (n + 1), where we allow the values
of a and b to be at most n + 1. If b = 0, the third line returns the correct
GCD, a. If b|a, gcd(a, b) = b, which is the value returned by the algorithm
since r evaluates to 0. Otherwise, the algorithm recursively computes and returns
gcd(b, r). Now by Lemma 4.3.1 in the lecture notes, gcd(a, b) = gcd(b, r). Also,
since 0 ≤ r < b ≤ n + 1, r and b are both at most n (if b was n + 1, a would
also be n + 1, which implies b|a, which is a case we have already handled) and
not both zero. Hence by the inductive hypothesis, Euclids Algorithm correctly
computes gcd(b, r) in a finite number of steps, which implies that it also correctly
computes gcd(a, b) in a finite number of steps, since the sequence of steps before
the recursive call adds only a finite overhead. Hence P (n+1) is true. This proves
the claim by induction. The truth of P (n) for all n ∈ N+ obviously implies the
theorem.

(c) The first step of the algorithm swaps 1247 and 899 so a = 1247, b = 899. We
tabulate the values of a, b and r in each successive iteration until r = 0:
Iteration a b r
1 1247 899 348
2 899 348 203
3 348 203 145
4 203 145 58
5 145 58 29

The value of b when r is zero is 29, so this is the GCD.

Exercise 4 (20 Points) Some prime facts:

(a) Prove that for every positive integer n, there exist at least n consecutive composite
numbers. (10 points)
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(b) Prove that if an integer n ≥ 2 is such that there is no prime p ≤
√

n that divides
n, then n is a prime. (10 points)

Solution:

(a) Recall the definition n! = 1× 2× 3× · · · × n for any positive integer n. Consider
the consecutive positive integers (n+1)!+2, (n+1)!+3, . . . (n+1)!+(n+1). By
definition of factorial, all integers from 2 to (n+1) divide (n+1)!, so 2|((n+1)!+2),
3|((n + 1)! + 3), and so on up to (n + 1)|((n + 1)! + (n + 1)) (remember the
property of divisibility proved in Exercise 3a.) Thus all members of this sequence
are composite, making n consecutive composite numbers. This sequence can be
generated for any n, so for all n there exists at least n consecutive composite
numbers.

(b) Proof by contradiction: Assume n is not prime. By Theorem 5.1.2, n = p1p2 . . . pk

for primes p1 ≤ p2 ≤ . . . ≤ pk, and since n is not prime k ≥ 2. Since no
prime less than or equal to

√
n divides n,

√
n < p1 ≤ p2. Then p1p2 > n, so

n = p1p2 . . . pk > n, a contradiction. Thus our assumption was false and n must
be prime.

Exercise 5 (25 Points) A fun game:

To start with, there is a chart with numbers 1211 and 1729 written on it. Now you and
I take turns and you go first. On each players turn, he or she must write a new positive
integer on the board that is the difference of two numbers that are already there. The
first person who cannot create a new number loses the game.
For example, your first move must be 1729 − 1211 = 518. Then I could play either
1211− 518 = 693 or 1729− 518 = 1211, and so forth.

(a) Prove every number written on the chart is a multiple of 7 less than or equal to
1729. (10 points)

(b) Prove that every positive multiple of 7 less than or equal to 1729 is on the chart
at the end of the game. (10 points)

(c) Can you predict the winner? What if I go first? (5 points)

Solution.

(a) We use induction. Let P(n) be the proposition that after n moves, every number
on the board is a positive linear combination of 1729 and 1211.

Base case. P(0) is true because 1729 and 1211 are trivial linear combinations
of 1729 and 1211.

Inductive step. Assume that after n moves, every number on the board is a
positive linear combination of 1729 and 1211. The next number written on the
board is also a positive linear combination, because:
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– The rules require the number to be positive.

– The new number must be a difference of two numbers already on the board,
which are themselves linear combinations of 1729 and 1211 by assumption.
And a difference of linear combinations is another linear combination: dif-
ference of linear combinations of x and y can be expressed as a1x + b1y −
a2x + b2y = (a1 − a2)x + (b1− b2)y which is again, a linear combination.

By induction, every number on the board is a positive linear combination of 1729
and 1211. And every positive linear combination of 1729 and 1211 is a multiple
of gcd(1729,1211)=7.

(b) Let x be the smallest number on the board at the end of the game. By the
Division Algorithm, there exist integers q and r such that 1729 = q · x + r where
0 ≤ r < x. When no more moves are possible, 1729 − x must already be on the
board, and thus so must 1729− 2x, . . . , 1729− (q − 1)x. However, 1729− qx = r
can not be on the board, since r < x and x is defined to be the smallest number
there. The only explanation is that r = 0, which implies that x|1729. By a
symmmetric argument, x|1211. Therefore, x is a common divisor of 1729 and
1211. The only common divisors of 1729 and 1211 are 1 and 7, and x can not be
1 by the preceding part (a). Therefore, 7 is on the board at the end of the game.
Since no more moves are possible, 1729− 7, 1729− 2× 7, . . . , 7, 0 must all be on
the board as well. So every positive multiple of of 7 less than or equal to 1729 is
on the board at the end of the game.

(c) There are 1729/7 = 247 numbers on the board at the end of the game. Thus,
there were 247− 2 = 245 moves. First player gets the last move, so whoever goes
first wins.
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