CS103X: Discrete Structures Homework Assignment 2: Solutions

Due February 1, 2008

Exercise 1 (10 Points). Prove or give a counterexample for the following:
Use the Fundamental Theorem of Arithmetic to prove that for $n \in \mathbb{N}, \sqrt{n}$ is irrational unless n is a perfect square, that is, unless there exists $a \in \mathbb{N}$ for which $n=a^{2}$.

Solution: We will prove the statement by contradiction. Assume $n \in \mathbb{N}$ is not a perfect square, yet its square root is a rational number $\frac{p}{q}$ for coprime integers p, q, where $q \neq 0$. So $\sqrt{n}=\frac{p}{q}$ or $n=\left(\frac{p}{q}\right)^{2}$. Without loss of generality, we can assume both p and q are non-negative. If $p=0$, then $n=0$ which is a perfect square, contradicting our assumption. So we can assume both p and q are positive. By the Fundamental Theorem of Arithmetic, we can uniquely write both p and q as products of primes, say $p=p_{1} p_{2} \ldots p_{m}$ and $q=q_{1} q_{2} \ldots q_{n}$. Since p and q are coprime, they have no common factors, so $p_{i} \neq q_{j}$ for all $1 \leq i \leq m, 1 \leq j \leq n$. We have:

$$
p^{2}=\left(p_{1} p_{2} \ldots p_{m}\right)^{2}=p_{1}^{2} p_{2}^{2} \ldots p_{m}^{2}
$$

and

$$
q^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2}=q_{1}^{2} q_{2}^{2} \ldots q_{n}^{2}
$$

Now $p^{2} a n d q^{2}$ cannot have any common factors >1 if they did have a common factor $d>1$, any prime factor f of d (and there must be at least one such) must also be a common prime factor of p^{2} and q^{2} (transitivity of divisibility). By the Fundamental Theorem of Arithmetic, $p_{1}^{2} p_{2}^{2} \ldots p_{m}^{2}$ is the unique prime factorization of p, so f must be one of the primes $p_{1}, p_{2}, \ldots, p_{m}$. Similarly, f must also be one of the primes $q_{1}, q_{2}, \ldots, q_{n}$. But this contradicts our statement that no $p_{i}=q_{j}$. So p^{2} and q^{2} are coprime.

A ratio of natural numbers in lowest terms is itself a natural number if and only if its denominator is 1 . Since $n \in N$, we must have $q^{2}=1$, which implies $q=1$. But then n must be the perfect square p^{2}, which contradicts our assumption. The statement is thus proved by contradiction.
Exercise $2(20$ Points). Prove or disprove, for integers a, b, c and d :
(a) If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(b) If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
(c) If a and b are perfect squares and $a \mid b$, then $\sqrt{a} \mid \sqrt{b}$.
(d) If $a b \mid c d$, then $a \mid c$ or $a \mid d$.

Solution:

(a) If $a \mid b$ then $b=m a$ for some integer m and if $a \mid c$ then $c=n a$ for some integer n. Thus, $(b+c)=m a+n a=(m+n) a$. Since $m+n$ is an integer, $a \mid(b+c)$
(b) The proof is essentially identical to that of Theorem 5.1.1.a. Since $\operatorname{gcd}(a, b)=1$, there exist integers u, v with $a u+b v=1$. Multiply both sides by c to get $c=a u c+b c v$ (by the result of the first part of this exercise). We know that $a \mid b c$ so $a \mid b c v$ and of course $a \mid a u c$, so $a \mid(a u c+b c v)$. Thus $a \mid c$.
(c) Proof by contradiction: Assume \sqrt{b} is not divisible by \sqrt{a}. Consider the prime factorizations of \sqrt{a} and \sqrt{b} - there must be some prime p that appears m times in the prime factorization of \sqrt{a} and n times in the prime factorization of \sqrt{b} with $m>n$. The prime factorizations of perfect squares include every element of their square roots factorization twice, so p must occur $2 m$ times in the prime factorization of a and $2 n$ times in the prime factorization of b. But $2 m \geq 2 n$, which implies that b is not divisible by a, a contradiction. Therefore $\sqrt{a} \mid \sqrt{b}$.
(d) False. One possible counterexample is $a=10, b=1, c=4, d=25$.

Exercise 3 (25 Points). On Euclids algorithm:
(a) Write the algorithm in pseudo-code. (10 points)
(b) Prove that Euclids Algorithm correctly finds the GCD of a and b in a finite number of steps. (10 points)
(c) Use the algorithm to calculate $\operatorname{gcd}(1247,899)$. Write out the complete sequence of derivations. (5 points)

Solution:

(a) Procedure GCD-Euclid

Input: Integers a, b, not both 0 .
i. $a=|a|, b=|b|$
ii. If $b>a$ then swap a and b first
iii. If $b=0$, then return a
iv. $q=b a / b c$ (Quotient)
v. $r=a-q * b$ (Remainder)
vi. If $r=0$, then return b
vii. Return GCD-Euclid(b, r)

The first three lines are needed only for the recursive call and can be factored out with a second procedure.
The following nonrecursive version also works:
Procedure GCD-Euclid-Nonrecursive
Input: Integers a, b, not both 0 .
i. $a=|a|, b=|b|$
ii. If $b>a$ then swap a and b
iii. If $b=0$, then return a
iv. Do
v. $q=b a / b c$ (Quotient)
vi. $r=a-q * b$ (Remainder)
vii. If $r=0$, then return b
viii. $a=b$
ix. $b=r$
x. Loop
(b) Theorem. Euclid's Algorithm correctly finds the GCD of a and b in a finite number of steps.
Proof. We will prove the correctness of the algorithm in the context of the recursive listing above. The proof for the non-recursive version is identical except that it is slightly more difficult to phrase correctly. The first couple of lemmas help to justify the assumption $a>b>0$ in the lecture notes.
Lemma 1. $d \mid a$ if and only if $d||a|$.
Proof. First we show that if $d \mid x$, then $d \mid-x$. By the Division Algorithm, $x=q d$ for some integer q, so $-x=-q d=(-q) d$. Since $-q$ is obviously integral since q is (and the Division Algorithm guarantees that this is an unique representation given $x, d), d$ divides $-x$. So if $d \mid a$, then $|a|$ is either a, which is trivially divisible by d, or $-a$, which by the above reasoning is also divisible by d. Similarly, if $d \mid$ $|a|$, then a is either $|a|$ or $-|a|$, both of which are divisible by d as above. This proves the result.
Lemma 2. $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)=\operatorname{gcd}(|b|,|a|)$ Proof. Let $d=\operatorname{gcd}(a, b)$. Since $d=\operatorname{gcd}(a, b), d \mid a$ and $d \mid b$, so by Lemma $1, d| | a \mid$ and $d||b|$, i.e. d is a common divisor of -a- and -b-. Now we prove by contradiction that d is the greatest such divisor. Assume there is some $c>d$ such that $c||a|$ and $c||b|$. Then by Lemma 1, $c \mid a$ and $c \mid b$. So c is a common divisor of a and b strictly greater than the GCD of a and b, which contradicts the definition of the GCD. Therefore we must have $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$. Also, the definition of $\operatorname{gcd}(x, y)$ is clearly symmetric in x and y, so $\operatorname{gcd}(|a|,|b|)=\operatorname{gcd}(|b|,|a|)$. Hence proved.

Back to the original problem. Let $P(n)$ be the following statement:
"Euclids Algorithm finds the correct GCD of a and b in a finite number of steps, for all $0 \leq a, b \leq n(a$ and b not both 0$)$."
We will prove $P(n)$ holds for all positive integers n by induction. We assume $a \geq b$: if not, the first couple of steps of the algorithm will take their absolute values and swap them if necessary so the relation holds, and by Lemma 2 the GCD of these two new values is precisely the same as the GCD of the original values. The base case, $n=1$, has two possibilities: $a=1, b=0$, or $a=1, b=1$. In the first case, the third line of the algorithm returns the correct GCD 1, and in the second case r evaluates to 0 before any recursive calls, so the correct GCD $b=1$ is returned, in a finite number of steps (no recursive calls, so at most 6 lines of pseudocode).

Now assume $P(n)$ is true and consider $P(n+1)$, where we allow the values of a and b to be at most $n+1$. If $b=0$, the third line returns the correct GCD, a. If $b \mid a, \operatorname{gcd}(a, b)=b$, which is the value returned by the algorithm since r evaluates to 0 . Otherwise, the algorithm recursively computes and returns $\operatorname{gcd}(b, r)$. Now by Lemma 4.3.1 in the lecture notes, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$. Also, since $0 \leq r<b \leq n+1, r$ and b are both at most n (if b was $n+1, a$ would also be $n+1$, which implies $b \mid a$, which is a case we have already handled) and not both zero. Hence by the inductive hypothesis, Euclids Algorithm correctly computes $\operatorname{gcd}(b, r)$ in a finite number of steps, which implies that it also correctly computes $\operatorname{gcd}(a, b)$ in a finite number of steps, since the sequence of steps before the recursive call adds only a finite overhead. Hence $P(n+1)$ is true. This proves the claim by induction. The truth of $P(n)$ for all $n \in \mathbb{N}^{+}$obviously implies the theorem.
(c) The first step of the algorithm swaps 1247 and 899 so $a=1247, b=899$. We tabulate the values of a, b and r in each successive iteration until $r=0$:

Iteration	a	b	r
1	1247	899	348
2	899	348	203
3	348	203	145
4	203	145	58
5	145	58	29

The value of b when r is zero is 29 , so this is the GCD.
Exercise 4 (20 Points) Some prime facts:
(a) Prove that for every positive integer n, there exist at least n consecutive composite numbers. (10 points)
(b) Prove that if an integer $n \geq 2$ is such that there is no prime $p \leq \sqrt{n}$ that divides n, then n is a prime. (10 points)

Solution:

(a) Recall the definition n ! $=1 \times 2 \times 3 \times \cdots \times n$ for any positive integer n. Consider the consecutive positive integers $(n+1)!+2,(n+1)!+3, \ldots(n+1)!+(n+1)$. By definition of factorial, all integers from 2 to $(n+1)$ divide $(n+1)!$, so $2 \mid((n+1)!+2)$, $3 \mid((n+1)!+3)$, and so on up to $(n+1) \mid((n+1)!+(n+1))$ (remember the property of divisibility proved in Exercise 3a.) Thus all members of this sequence are composite, making n consecutive composite numbers. This sequence can be generated for any n, so for all n there exists at least n consecutive composite numbers.
(b) Proof by contradiction: Assume n is not prime. By Theorem 5.1.2, $n=p_{1} p_{2} \ldots p_{k}$ for primes $p_{1} \leq p_{2} \leq \ldots \leq p_{k}$, and since n is not prime $k \geq 2$. Since no prime less than or equal to \sqrt{n} divides $n, \sqrt{n}<p_{1} \leq p_{2}$. Then $p_{1} p_{2}>n$, so $n=p_{1} p_{2} \ldots p_{k}>n$, a contradiction. Thus our assumption was false and n must be prime.

Exercise 5 (25 Points) A fun game:
To start with, there is a chart with numbers 1211 and 1729 written on it. Now you and I take turns and you go first. On each players turn, he or she must write a new positive integer on the board that is the difference of two numbers that are already there. The first person who cannot create a new number loses the game.
For example, your first move must be $1729-1211=518$. Then I could play either $1211-518=693$ or $1729-518=1211$, and so forth.
(a) Prove every number written on the chart is a multiple of 7 less than or equal to 1729. (10 points)
(b) Prove that every positive multiple of 7 less than or equal to 1729 is on the chart at the end of the game. (10 points)
(c) Can you predict the winner? What if I go first? (5 points)

Solution.

(a) We use induction. Let $\mathrm{P}(\mathrm{n})$ be the proposition that after n moves, every number on the board is a positive linear combination of 1729 and 1211.

Base case. $\mathrm{P}(0)$ is true because 1729 and 1211 are trivial linear combinations of 1729 and 1211.

Inductive step. Assume that after n moves, every number on the board is a positive linear combination of 1729 and 1211. The next number written on the board is also a positive linear combination, because:

- The rules require the number to be positive.
- The new number must be a difference of two numbers already on the board, which are themselves linear combinations of 1729 and 1211 by assumption. And a difference of linear combinations is another linear combination: difference of linear combinations of x and y can be expressed as $a_{1} x+b 1 y-$ $a_{2} x+b_{2} y=\left(a_{1}-a_{2}\right) x+\left(b 1-b_{2}\right) y$ which is again, a linear combination.

By induction, every number on the board is a positive linear combination of 1729 and 1211. And every positive linear combination of 1729 and 1211 is a multiple of $\operatorname{gcd}(1729,1211)=7$.
(b) Let x be the smallest number on the board at the end of the game. By the Division Algorithm, there exist integers q and r such that $1729=q \cdot x+r$ where $0 \leq r<x$. When no more moves are possible, $1729-x$ must already be on the board, and thus so must $1729-2 x, \ldots, 1729-(q-1) x$. However, $1729-q x=r$ can not be on the board, since $r<x$ and x is defined to be the smallest number there. The only explanation is that $r=0$, which implies that $x \mid 1729$. By a symmmetric argument, $x \mid 1211$. Therefore, x is a common divisor of 1729 and 1211. The only common divisors of 1729 and 1211 are 1 and 7 , and x can not be 1 by the preceding part (a). Therefore, 7 is on the board at the end of the game. Since no more moves are possible, $1729-7,1729-2 \times 7, \ldots, 7,0$ must all be on the board as well. So every positive multiple of of 7 less than or equal to 1729 is on the board at the end of the game.
(c) There are $1729 / 7=247$ numbers on the board at the end of the game. Thus, there were $247-2=245$ moves. First player gets the last move, so whoever goes first wins.

