# CS103X: Discrete Structures Homework Assignment 2 

Due February 1, 2008
Exercise 1 (10 Points). Prove or give a counterexample for the following:
Use the Fundamental Theorem of Arithmetic to prove that for $n \in \mathbb{N}, \sqrt{n}$ is irrational unless $n$ is a perfect square, that is, unless there exists $a \in \mathbb{N}$ for which $n=a^{2}$.

Exercise $2(20$ Points). Prove or disprove, for integers $a, b, c$ and $d$ :
(a) If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(b) If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
(c) If $a$ and $b$ are perfect squares and $a \mid b$, then $\sqrt{a} \mid \sqrt{b}$.
(d) If $a b \mid c d$, then $a \mid c$ or $a \mid d$.

Exercise 3 ( 25 Points). On Euclids algorithm:
(a) Write the algorithm in pseudo-code. (10 points)
(b) Prove that Euclids Algorithm correctly finds the GCD of $a$ and $b$ in a finite number of steps. (10 points)
(c) Use the algorithm to calculate $\operatorname{gcd}(1247,899)$. Write out the complete sequence of derivations. (5 points)

Exercise 4 (20 Points) Some prime facts:
(a) Prove that for every positive integer $n$, there exist at least $n$ consecutive composite numbers. (10 points)
(b) Prove that if an integer $n \geq 2$ is such that there is no prime $p \leq \sqrt{n}$ that divides $n$, then $n$ is a prime. (10 points)

Exercise 5 (25 Points) A fun game:
To start with, there is a chart with numbers 1211 and 1729 written on it. Now you and I take turns and you go first. On each players turn, he or she must write a new positive integer on the board that is the difference of two numbers that are already there. The first person who cannot create a new number loses the game.
For example, your first move must be $1729-1211=518$. Then I could play either $1211-518=693$ or $1729-518=1211$, and so forth.
(a) Prove every number written on the chart is a multiple of 7 less than or equal to 1729. (10 points)
(b) Prove that every positive multiple of 7 less than or equal to 1729 is on the chart at the end of the game. (10 points)
(c) Can you predict the winner? What if I go first? (5 points)

