CS 103X: Discrete Structures Homework Assignment 8

Due March 15, 2007

Exercise 1 (10 points). The complement of a graph $G=(V, E)$ is the graph

$$
(V,\{\{x, y\}: x, y \in E, x \neq y\} \backslash E) .
$$

A graph is self-complementary if it is isomorphic to its complement.
(a) Prove that no simple graph with two or three vertices is self-complementary, without enumerating all isomorphisms of such graphs.
(b) Find examples of self-complementary simple graphs with 4 and 5 vertices.

Exercise 2 (10 points). Prove that if a graph has at most m vertices of degree at most n and all other vertices have degree at most k, with $k<n$ and $m<n$, then the graph is colorable with $m+k+1$ colors.

Exercise 3 (30 points). Prove or disprove, for a graph G on a finite set of n vertices:
(a) If every vertex of G has degree 2 , then G contains a cycle.
(b) If G is disconnected, then its complement is connected.
(c) If T is a non-cyclic tour in G, and no strictly longer tour in G contains T, then both endpoints of T have odd degree.

Exercise 4 (15 points). Consider m graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right), \ldots, G_{m}=\left(V_{m}, E_{m}\right)$. Their union can be defined as

$$
\bigcup_{i=1}^{m} G_{i}=\left(\bigcup_{i=1}^{m} V_{i}, \bigcup_{i=1}^{m} E_{i}\right)
$$

Show that, for any natural number $n \geq 2$, the clique K_{n} can be expressed as the union of k bipartite graphs if $n \leq 2^{k}$.

Exercise 5 (15 points). A binary tree is defined inductively as follows:

- A single vertex u defines a binary tree with root u.
- A vertex u linked by edges to the roots of one or two binary trees defines a binary tree with root u.

The following figure illustrates the three possibilities:

T_{1} and T_{2} are called subtrees, u is the parent of the roots of the subtrees, and these roots are children of u. The vertices of a binary tree without any children are called leaves. Here's an example of a binary tree:

The distance between two vertices of a tree is the number of edges in the shortest path connecting them. The height of the tree is the maximum distance between the root and a leaf. Prove that the height of a binary tree with n vertices is at least $\log _{2} n$. (Hint: Strong induction.)

Exercise 6 (20 points). Given a graph $G=(V, E)$, an edge $e \in E$ is said to be a bridge if the graph $G^{\prime}=(V, E \backslash\{e\})$ has more connected components than G. Let G be a bipartite k-regular graph for $k \geq 2$. Prove that G has no bridge.

