CS 103X: Discrete Structures Homework Assignment 7

Due March 8, 2007

Exercise 1 (10 points). In a survey on the gelato preferences of college students, the following data was obtained:

- 78 like mixed berry
- 32 like irish cream
- 57 like tiramisu
- 13 like both mixed berry and irish cream
- 21 like both irish cream and tiramisu
- 16 like both tiramisu and mixed berry
- 5 like all three flavours above
- 14 like none of these three flavours

How many students were surveyed?
Exercise 2 (10 points). In a mathematics contest with three problems, 80% of the participants solved the first problem, 75% solved the second and 70% solved the third. Prove that at least 25% of the participants solved all three problems. (The claim might seem obvious - find a proof.)

Exercise 3 (20 points).
(a) What is the number of integer solutions of the equation

$$
x_{1}+x_{2}+x_{3}=50,
$$

such that $x_{i} \geq 0$ for each $1 \leq i \leq 3$?
(b) What is the number of integer solutions of the equation

$$
x_{1}+x_{2}+x_{3}=50,
$$

such that $0 \leq x_{i} \leq 9$ for each $1 \leq i \leq 3$?
Exercise 4 (10 points). Let $p(1), p(2), \ldots, p(n)$ be some permutation of the first n positive integers, where n is odd. Prove that the product

$$
\prod_{i=1}^{n}(i-p(i))
$$

is necessarily even. (Assume as usual that an even number need not be positive.) Is the condition that n is odd necessary?

Exercise 5 (15 points). Consider the numbers $1,2, \ldots, 2 n$, and take any $n+1$ of them. Prove that there are two numbers i, j in this sample such that $i \mid j$.

Exercise 6 (15 points). For each of the following pairs of functions $f, g: \mathbb{N}^{+} \rightarrow \mathbb{R}$, state with a brief justification whether $f(x)$ is $O(g(x)), \Omega(g(x)), \Theta(g(x))$, or none of the above.
(a) $f(x)=x^{x^{2}}, g(x)=2^{2^{x}}$
(b) $f(x)=\cos (x), g(x)=2^{x} \sin (x)$ (Note: x measured in degrees for the trigonometric functions)
(c) $f(x)=\sqrt[x]{x}, g(x)=\log _{x} x$

Exercise 7 (20 points). Prove or disprove the following properties:
(a) For $f, g, p, q: \mathbb{N}^{+} \rightarrow \mathbb{R}$: If $f(n)=O(p(n))$ and $g(n)=O(q(n))$, then $f(g(n))=O(p(q(n))$.
(b) For $f, p: \mathbb{N}^{+} \rightarrow \mathbb{R}$ and $g, q: \mathbb{N}^{+} \rightarrow \mathbb{N}^{+}:$If $f(n)=O(p(n)), g(n)=O(q(n))$, and $p(n), q(n)>0$ for all n, then $(f(n))^{g(n)}=O\left((p(n))^{q(n)}\right)$.

