CS 103X: Discrete Structures Homework Assignment 4

Due February 15, 2007

Exercise 1 (20 points). For each of the following relations, state whether they fulfill each of the 4 main properties - reflexive, symmetric, antisymmetric, transitive. Briefly substantiate each of your answers.

- (a) The coprime relation on \mathbb{Z} . (Recall that $a, b \in \mathbb{Z}$ are coprime if and only if gcd(a, b) = 1.)
- (b) Divisibility on \mathbb{Z} .
- (c) The relation T on \mathbb{R} such that aTb if and only if $ab \in \mathbb{Q}$.

Exercise 2 (20 points). Prove that each of the following relations \sim is an equivalence relation:

- (a) For positive integers a and b, $a \sim b$ if and only if a and b have exactly the same prime factors, up to repetitions. (For example, $6 = 2 \times 3$ and $432 = 2^4 \times 3^3$ are related by \sim , but $18 = 2 \times 3^2$ and $10 = 2 \times 5$ are not.)
- (b) For integers a and b, $a \sim b$ if and only if a + 3b is divisible by 4.
- (c) A sequence of real numbers $x_1, x_2, x_3...$ has a *limit* L if for any real number $\varepsilon > 0$, there is some integer n such that $|x_i L| < \varepsilon$ for all i > n. (Warning: The condition in the above definition must hold for all possible $\varepsilon > 0$, not just one value of ε . For each ε there should be a corresponding n.) Let $A = a_1, a_2, a_3, ...$ and $B = b_1, b_2, b_3, ...$ be two sequences of real numbers. Then $A \sim B$ if and only if the sequence $a_1 b_1, a_2 b_2, a_3 b_3, ...$ has the limit 0.
- (d) Let S be some set and T be a subset of S. For subsets A and B of S, say $A \sim B$ if and only if $(A \cup B) \setminus (A \cap B) \subseteq T$.

Exercise 3 (20 points). Let A be a set. Given a relation R on A, define a relation S by $xSy \Leftrightarrow (xRy \text{ and } yRx)$, and a relation T by $xTy \Leftrightarrow (xRy \text{ and } yRx)$.

- (a) Show that S is symmetric and T antisymmetric.
- (b) Prove that $xRy \Leftrightarrow (xSy \text{ or } xTy)$.
- (c) Show that if R is transitive, then S and T are also transitive, but that the reverse does not hold.

Exercise 4 (20 points). Powers of relations:

- (a) Prove that if R is a relation on a finite set A, there exist $n, m \in \mathbb{N}^+$, such that $\mathbb{R}^n = \mathbb{R}^m$.
- (b) Prove that the claim in (a) need not hold if the set A is infinite.

Exercise 5 (20 points). For each of the following pairs of sets, define a bijection between the two. You can choose which set is the domain and which is the codomain. You should state a precise rule that maps each member of the domain to a member of the codomain. (A little drawing is not a precise rule.) Provide a brief justification why your function is a bijection, but there is no need for a formal proof.

- (a) \mathbb{N} and $\mathbb{Z} \setminus \mathbb{N}$.
- (b) \mathbb{N} and \mathbb{Z} .
- (c) \mathbb{N} and F, where $F = \{a \in \mathbb{Z} : a \equiv_5 0\}$.
- (d) \mathbb{N}^+ and \mathbb{Q}^+ , where $\mathbb{Q}^+ = \{\frac{a}{b} : a, b \in \mathbb{N}^+\}$. (For the purposes of this question, two elements a/b and c/d in \mathbb{Q}^+ are considered the same only if a = c and b = d. Thus 2/3 and 4/6 are regarded as distinct.)

For general education: An infinite set is said to be *countable* if it has the same cardinality as \mathbb{N} . The solution to the last question above can be easily extended to show that \mathbb{Q} is countable. The set \mathbb{R} , on the other hand, is not countable.