CS 103X: Discrete Structures Homework Assignment 4

Due February 15, 2007

Exercise 1 (20 points). For each of the following relations, state whether they fulfill each of the 4 main properties - reflexive, symmetric, antisymmetric, transitive. Briefly substantiate each of your answers.
(a) The coprime relation on \mathbb{Z}. (Recall that $a, b \in \mathbb{Z}$ are coprime if and only if $\operatorname{gcd}(a, b)=1$.)
(b) Divisibility on \mathbb{Z}.
(c) The relation T on \mathbb{R} such that $a T b$ if and only if $a b \in \mathbb{Q}$.

Exercise 2 (20 points). Prove that each of the following relations \sim is an equivalence relation:
(a) For positive integers a and $b, a \sim b$ if and only if a and b have exactly the same prime factors, up to repetitions. (For example, $6=2 \times 3$ and $432=2^{4} \times 3^{3}$ are related by \sim, but $18=2 \times 3^{2}$ and $10=2 \times 5$ are not.)
(b) For integers a and $b, a \sim b$ if and only if $a+3 b$ is divisible by 4 .
(c) A sequence of real numbers $x_{1}, x_{2}, x_{3} \ldots$ has a limit L if for any real number $\varepsilon>0$, there is some integer n such that $\left|x_{i}-L\right|<\varepsilon$ for all $i>n$. (Warning: The condition in the above definition must hold for all possible $\varepsilon>0$, not just one value of ε. For each ε there should be a corresponding n.) Let $A=a_{1}, a_{2}, a_{3}, \ldots$ and $B=$ $b_{1}, b_{2}, b_{3}, \ldots$ be two sequences of real numbers. Then $A \sim B$ if and only if the sequence $a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}, \ldots$ has the limit 0 .
(d) Let S be some set and T be a subset of S. For subsets A and B of S, say $A \sim B$ if and only if $(A \cup B) \backslash(A \cap B) \subseteq T$.

Exercise 3 (20 points). Let A be a set. Given a relation R on A, define a relation S by $x S y \Leftrightarrow(x R y$ and $y R x)$, and a relation T by $x T y \Leftrightarrow(x R y$ and $y \not R x)$.
(a) Show that S is symmetric and T antisymmetric.
(b) Prove that $x R y \Leftrightarrow(x S y$ or $x T y)$.
(c) Show that if R is transitive, then S and T are also transitive, but that the reverse does not hold.

Exercise 4 (20 points). Powers of relations:
(a) Prove that if R is a relation on a finite set A, there exist $n, m \in \mathbb{N}^{+}$, such that $R^{n}=R^{m}$.
(b) Prove that the claim in (a) need not hold if the set A is infinite.

Exercise 5 (20 points). For each of the following pairs of sets, define a bijection between the two. You can choose which set is the domain and which is the codomain. You should state a precise rule that maps each member of the domain to a member of the codomain. (A little drawing is not a precise rule.) Provide a brief justification why your function is a bijection, but there is no need for a formal proof.
(a) \mathbb{N} and $\mathbb{Z} \backslash \mathbb{N}$.
(b) \mathbb{N} and \mathbb{Z}.
(c) \mathbb{N} and F, where $F=\left\{a \in \mathbb{Z}: a \equiv_{5} 0\right\}$.
(d) \mathbb{N}^{+}and \mathbb{Q}^{+}, where $\mathbb{Q}^{+}=\left\{\frac{a}{b}: a, b \in \mathbb{N}^{+}\right\}$. (For the purposes of this question, two elements a / b and c / d in \mathbb{Q}^{+} are considered the same only if $a=c$ and $b=d$. Thus $2 / 3$ and $4 / 6$ are regarded as distinct.)

For general education: An infinite set is said to be countable if it has the same cardinality as \mathbb{N}. The solution to the last question above can be easily extended to show that \mathbb{Q} is countable. The set \mathbb{R}, on the other hand, is not countable.

