CS 103X: Discrete Structures Homework Assignment 3

Due February 1, 2007

Exercise 1 (20 points). On well-ordering and induction:
(a) Prove the induction principle from the well-ordering principle.
(b) Prove the well-ordering principle from the induction principle.

Conclude that the principles of induction, strong induction, and well-ordering are equally powerful.
Exercise 2 (20 points). (a) Let's develop another proof that $\sqrt{2}$ is irrational. Assume as we did in class that there exist two numbers $p, q \in \mathbb{Z}$, with $q \neq 0$, such that

$$
\frac{p}{q}=\sqrt{2}
$$

Show that

$$
\frac{2 q-p}{p-q}=\sqrt{2}
$$

Use the well-ordering principle to complete the argument, and write the whole proof formally.
(b) Use the Fundamental Theorem of Arithmetic to prove that for $n \in \mathbb{N}, \sqrt{n}$ is irrational unless n is a perfect square, that is, unless there exists $a \in \mathbb{N}$ for which $n=a^{2}$.

Exercise 3 (20 points). Prove or disprove, for integers a, b, c and d :
(a) If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(b) If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
(c) If a and b are perfect squares and $a \mid b$, then $\sqrt{a} \mid \sqrt{b}$.
(d) If $a b \mid c d$, then $a \mid c$ or $a \mid d$.

Exercise 4 (25 points). On Euclid's algorithm:
(a) Write the algorithm in pseudo-code. (10 points)
(b) State a theorem that asserts the correctness of the algorithm and prove the theorem. (10 points)
(c) Use the algorithm to calculate $\operatorname{gcd}(5924,6892)$. Write out the complete sequence of derivations. (5 points)

Exercise 5 (15 points). Some prime facts:
(a) Prove that for every positive integer n, there exist at least n consecutive composite numbers. (10 points)
(b) Prove that if an integer $n \geq 2$ is such that there is no prime $p \leq \sqrt{n}$ that divides n, then n is a prime. (5 points)

