CS 103X: Discrete Structures Homework Assignment 4

Due February 10, 2006

Exercise 1. Compute the following without using computer software. You should find Fermat's Little Theorem useful for some of these.

- (a) The last decimal digit of 3^{1000} .
- (b) 3^{1000} rem 31.
- (c) 3/16 in \mathbb{Z}_{31} .

Exercise 2. Prove or disprove:

- (a) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- (b) $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$
- (c) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$

Exercise 3. Examples of relations:

- (a) Find relations R and S on some set A, such that $R \circ S \neq S \circ R$.
- (b) Find a relation R on a finite set A, such that $R^n \neq R^{n+1}$ for every $n \in \mathbb{N}^+$.

Exercise 4. Give an example of a function $f : \mathbb{N} \to \mathbb{Z}$ that is:

- (a) Neither injective nor surjective.
- (b) Injective but not surjective.
- (c) Surjective but not injective.
- (d) Surjective and injective.

Exercise 5. Let R and S be equivalences on a set A. Decide which of the following are necessarily also equivalences on A; prove or give a counterexample. Then assume that R and S are partial orders on A and decide which of the following are necessarily partial orders on A; again, prove or give a counterexample.

- (a) $R \cap S$
- (b) $R \cup S$
- (c) $R \setminus S$
- (d) $R \circ S$

Exercise 6. EXTRA CREDIT: Let R be a relation on a set A, and T be the transitive closure of R. Prove:

- (a) T is transitive.
- (b) T is the smallest transitive relation that contains R. (That is, if U is a transitive relation on A and $R \subseteq U$, then $T \subseteq U$.)
- (c) If |A| = n then

$$T = \bigcup_{i=1}^{n} R^{i}.$$