CS 103X: Discrete Structures
 Homework Assignment 3

Due February 3, 2006

Exercise 1 (Reading Assignment). Read pages 43-44 in Lehman-Leighton.
Exercise 2. Warm-up:
(a) Two integers a, b are said to be coprime if $\operatorname{gcd}(a, b)=1$. If a and b are coprime, prove that the linear Diophantine equation $a x+b y=c$ always has an integer solution x, y. Conclude that the equation has infinitely many solutions.
(b) For integers $a, b \neq 0$, and any integer $m>0$, show that $\operatorname{gcd}(m a, m b)=m \cdot \operatorname{gcd}(a, b)$.

Exercise 3. Some prime facts:
(a) Prove that for every positive integer n, there exist at least n consecutive composite numbers.
(b) Prove that if an integer $n \geq 2$ is such that there is no prime $p \leq \sqrt{n}$ that divides n, then n is a prime.

Exercise 4. Fun with coprime numbers:
(a) Prove that a and b are coprime if and only if every integer is a linear combination of a and b.
(b) Prove that $a / \operatorname{gcd}(a, b), b / \operatorname{gcd}(a, b)$ are coprime.
(c) Let a and b be coprime. Prove:
i. If $a \mid c$ and $b \mid c$ then $a b \mid c$
ii. If $a \mid b c$ then $a \mid c$

Is the assumption that a and b are coprime necessary? (Substantiate.)
Exercise 5. Even more irrational roots:
(a) Use the Fundamental Theorem of Arithmetic to prove that for $n \in \mathbb{N}, \sqrt{n}$ is irrational unless n is a perfect square, that is, unless there exists $a \in \mathbb{N}$ for which $n=a^{2}$.
(b) Prove more generally that for any $k \in \mathbb{N}, \sqrt[k]{n}$ is irrational unless $n=a^{k}$ for some $a \in \mathbb{N}$.
(c) Prove that if p and q are distinct primes, $\sqrt{p q}$ and $\sqrt{p / q}$ are irrational.
(d) Suppose $a, b, c \in \mathbb{Q}$. Prove that if

$$
a \sqrt{2}+b \sqrt{3}+c \sqrt{5}=0
$$

then

$$
a=b=c=0 .
$$

Exercise 6. EXTRA CREDIT:

For $a, b \in \mathbb{Z}, m$ is said to be a common multiple of a and b if and only if $a \mid m$ and $b \mid m$. If $a, b \neq 0$, they have positive common multiples (such as $|a b|$) and, by the well-ordering principle, a smallest positive common multiple, called the least common multiple, or $\operatorname{lcm}(a, b)$. This is the integer m that satisfies the following two criteria:

- $a \mid m$ and $b \mid m$.
- If $a \mid n$ and $b \mid n$ then $m \leq n$.

For example, $\operatorname{lcm}(10,15)=30$.
(a) For positive integers a and b, let $d=\operatorname{gcd}(a, b)$ and $m=\operatorname{lcm}(a, b)$. Prove that $d m=a b$. Use this to calculate $\operatorname{lcm}(9524,8692)$.
(b) Show that s is a common multiple of a and b if and only if $m \mid s$, where $m=\operatorname{lcm}(a, b)$.

