CS 103X: Discrete Structures Homework Assignment 1

Due January 20, 2006

Exercise 1 (Reading Assignment). Read pages 15-20 in Lehman-Leighton.
Exercise 2. Let A be a set containing n elements. For each of the following sets, state its cardinality. If more information is needed in order to answer, explain what is missing.
(a) $A \cup \emptyset$
(b) $A \cap \emptyset$
(c) $A \cup\{\emptyset\}$
(d) $A \cap\{\emptyset\}$
(e) $\{A, A\}$
(f) $2^{A} \cup A$
(g) $2^{A} \cup\{A\}$

Exercise 3. What's wrong with the following induction proof?
We prove that given n distinct lines in the plane, no two of them parallel, all these lines pass through a common point. The proof proceeds by induction. When $n=1$ there is only one line and the claim is clearly true. Suppose it is true for $n=k$, and consider some set of $k+1$ lines, denoted $\ell_{1}, \ell_{2}, \ldots, \ell_{k+1}$. By the induction hypothesis, the lines $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ all pass through a common point x, and the lines $\ell_{1}, \ell_{2}, \ldots, \ell_{k-1}, \ell_{k+1}$ all pass through a common point y. The lines ℓ_{1} and ℓ_{k-1} belong to both sets, so x and y lie on both ℓ_{1} and ℓ_{k-1}. However, ℓ_{1} and ℓ_{k-1} intersect at exactly one point, so $x=y$ and all the lines pass through a common point. This completes the proof.

Exercise 4. Prove by induction:
(a)

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(b) i. Assuming $r \neq 1$,

$$
\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}
$$

ii. After proving this by induction, derive the same result by setting $S=\sum_{i=0}^{n} r^{i}$, multiplying this equation by r, and solving the two equations for S.
iii. Conclude that

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

Proof tip: It is often useful to "unpack" the \sum 's, that is, to write out the summation in your drafts with "...", just for yourself, to get a visual idea of what the summation "looks like".

Exercise 5. The Fibonacci sequence is defined as follows:

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=1 \\
& a_{n}=a_{n-1}+a_{n-2} \quad \text { for all } n \geq 3
\end{aligned}
$$

Prove that

$$
a_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
$$

Exercise 6. In this exercise we will explore some of the properties of \sum and Π.
(a) Suppose $f(i)$ is some function of i, and $n, m \in \mathbb{N}^{+}$. Prove that
i.

$$
\sum_{i=1}^{n} a f(i)=a \sum_{i=1}^{n} f(i)
$$

ii.

$$
\prod_{i=1}^{n} a f(i)=a^{n} \prod_{i=1}^{n} f(i)
$$

(b) Simplify the following expressions and give a short justification of your solution:
i.

$$
\sum_{i=1}^{n} a
$$

ii.

$$
\prod_{j=1}^{n} f(i)
$$

(c) Suppose $f(i, j)$ is some function of i and j. Is it true that
i.

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} f(i, j)=\sum_{j=1}^{m} \sum_{i=1}^{n} f(i, j) ?
$$

ii.

$$
\prod_{i=1}^{n} \prod_{j=1}^{m} f(i, j)=\prod_{j=1}^{m} \prod_{i=1}^{n} f(i, j) ?
$$

iii.

$$
\prod_{i=1}^{n} \sum_{j=1}^{m} f(i, j)=\sum_{j=1}^{m} \prod_{i=1}^{n} f(i, j) ?
$$

Prove one of the formulas that you believe to be true. For one of the others, give and substantiate a counterexample.

Exercise 7. Extra credit:

(a) Let us draw n lines in the plane in such a way that no two are parallel and no three intersect in a common point. Prove that the plane is divided into exactly

$$
\frac{n(n+1)}{2}+1
$$

parts by the lines.
(b) Similarly, consider n planes in the 3-dimensional space in general position. (No two are parallel, any three have exactly one point in common, and no four have a common point.) What is the number of regions into which these planes partition the space?

